/ 课程向  

信号与系统3种变换性质整理

信号与系统3种变换性质整理

  1. 以下是信号与系统3种重要变换的公式整理,如有错误欢迎在评论区指出。
  2. 电子版见👉笔记整理部分信号与系统部分03 傅里叶变换、04 Laplace变换、05 z变换, 后续增减添补仅在电子PDF版中作修改,此处不再做改动。

Fourier变换

傅里叶变换的表示

f(t)F(jω)F(jω)=F[f(t)]=f(t)ejωtdtf(t)=F1[F(jω)]=12π=F(jω)ejωtdω\begin{aligned} f(t)&\longleftrightarrow F(j\omega)\\ F(j\omega)&=\mathscr{F}[f(t)]=\int_{-\infty}^{\infty}f(t)\mathrm{e}^{-j\omega t}\mathrm{d}t\\ f(t)&=\mathscr{F}^{-1}[F(j\omega)]=\frac{1}{2\pi}=\int_{-\infty}^{\infty}F(j\omega)\mathrm{e}^{j\omega t}\mathrm{d}\omega \end{aligned}

7种常用函数的傅里叶变换

gτ(t)τSa(ωτ2)eαtε(t)1α+jωeαt2αα2+ω2δ(n)(t)(jω)n12πδ(ω)sgn(t)2jωε(t)1jω+πδ(ω)\begin{aligned} g_\tau (t) &\longleftrightarrow\tau Sa(\frac{\omega \tau}{2})\\ \mathrm{e}^{-\alpha t}\varepsilon(t) &\longleftrightarrow\frac{1}{\alpha+j\omega}\\ \mathrm{e}^{-\alpha|t|}&\longleftrightarrow\frac{2\alpha}{\alpha^2+\omega^2}\\ \delta^{(n)}(t) &\longleftrightarrow(j\omega)^n\\ 1&\longleftrightarrow 2\pi\delta(\omega)\\ \mathrm{sgn}(t)&\longleftrightarrow\frac{2}{j\omega}\\ \varepsilon(t)&\longleftrightarrow\frac{1}{j\omega}+\pi \delta(\omega) \end{aligned}

傅里叶变换的性质

  1. 线性性质

  2. 奇偶虚实性

    F(jω)=F(jω),φ(ω)=φ(ω)|F(j\omega)|=|F(-j\omega)|,\varphi(\omega)=-\varphi(-\omega)

    f(t)f(t)为実(虚)函数,

    F(jω)F(j\omega) 的实部 R(ω)R(\omega)为偶(奇)函数

    虚部X(ω)X(\omega)为奇(偶)函数

    f(t)F(jω)(f(t)F(jω))\begin{aligned} f(-t)&\longleftrightarrow F^*(j\omega)\\ (f(-t)&\longleftrightarrow-F^*(j\omega)) \end{aligned}

  3. 对称性

    F(jt)2πf(ω)F(jt)\longleftrightarrow 2\pi f(-\omega)

  4. 尺度变换

    f(at)=1aF(jωa)f(at)=\frac{1}{|a|} F\left(j\frac{\omega}{a}\right)

  5. 时移特性

    f(t±t0)F(jω)e±jωt0f(t\pm t_0)\longleftrightarrow F(j\omega)\mathrm{e}^{\pm j\omega t_0}

  6. 频移特性

    F[j(ω±ω0)]f(t)ejω0tF[j(\omega\pm \omega_0)]\longleftrightarrow f(t)\mathrm{e}^{\mp j\omega_0 t}

  7. 卷积性质

    f1(t)f2(t)F1(jω)F2(jω)f1(t)f2(t)12πF1(jω)F2(jω)\begin{aligned} f_1(t)*f_2(t) &\longleftrightarrow F_1(j\omega)F_2(j\omega)\\ f_1(t) f_2(t) &\longleftrightarrow\frac{1}{2\pi}F_1(j\omega)*F_2(j\omega) \end{aligned}

  8. 时域微积分

    f(n)(t)(jω)nF(jω)tf(x)dxπF(0)δ(ω)+F(jω)jωF(0)=F(jω)ω=0=f(t)dt\begin{aligned} f^{(n)}(t)&\longleftrightarrow(j\omega)^n F(j\omega)\\ \int_{-\infty}^t f(x)\mathrm{d}x &\longleftrightarrow\pi F(0)\delta(\omega) +\frac{F(j\omega)}{j\omega}\\ F(0)=&\left.F(j\omega)\right|_{\omega=0}=\int_{-\infty}^{\infty}f(t)\mathrm{d} t \end{aligned}

  9. 频域微积分

    F(n)(jω)(jt)nf(t)ωF(jx)dxπf(0)δ(t)+f(t)jtf(0)=12πF(jω)dω\begin{aligned} F^{(n)}(j\omega)&\longleftrightarrow(-jt)^n f(t)\\ \int_{-\infty}^\omega F(jx)\mathrm{d}x &\longleftrightarrow\pi f(0)\delta(t) +\frac{f(t)}{-jt}\\ f(0)=&\frac{1}{2\pi}\int_{-\infty}^{\infty}F(j\omega)\mathrm{d}\omega \end{aligned}

  10. 相关定理

    F[R12(τ)]=F1(jω)F2(jω)F[R21(τ)]=F1(jω)F2(jω)F[R(τ)]=F(jω)2\begin{aligned} \mathscr{F}[R_{12}(\tau)]&=F_1(j\omega)F_2^*(j\omega)\\ \mathscr{F}[R_{21}(\tau)]&=F_1^*(j\omega)F_2(j\omega)\\ \mathscr{F}[R(\tau)]&=\left|F(j\omega)\right|^2 \end{aligned}

Laplace变换

单边拉普拉斯变换

f(t)F(s)F(s)=L[f(t)]=0f(t)estdt([s]>α)f(t)=[12πjσjσ+jF(s)estds]ε(t)\begin{aligned} f(t)&\longleftrightarrow F(s)\\ F(s)&=\mathcal{L}[f(t)]=\int_{0_-}^{\infty}f(t)\mathrm{e}^{-st}\mathrm{d}t\quad(\Re[s]>\alpha)\\ f(t)&=\left[\frac{1}{2\pi j}\int_{\sigma-j\infty}^{\sigma+j\infty}F(s)\mathrm{e}^{st}\mathrm{d}s\right]\varepsilon(t) \end{aligned}

常用函数的拉普拉斯变换

δ(n)(t)sn(σ>)ε(t)11s(σ>0)es0t1s+s0(σ>[s0])t1s2cos(βt)ss2+β2sin(βt)βs2+β2fT(t)11esT0TfT(t)esTdtδT(t)11esT\begin{aligned} \delta^{(n)}(t)&\longleftrightarrow s^n (\sigma>-\infty)\\ \varepsilon(t) \text{或}1&\longleftrightarrow\frac{1}{s}(\sigma>0)\\ \mathrm{e}^{-s_0t}&\longleftrightarrow\frac{1}{s+s_0}(\sigma>-\Re[s_0])\\ t&\longleftrightarrow\frac{1}{s^2}\\ \cos (\beta t)&\longleftrightarrow\frac{s}{s^2+\beta^2}\\ \sin (\beta t)&\longleftrightarrow\frac{\beta}{s^2+\beta^2}\\ f_T(t)&\longleftrightarrow\frac{1}{1-\mathrm{e}^{-sT}}\int_0^Tf_T(t)\mathrm{e}^{-sT}\mathrm{d}t\\ \delta_T(t)&\longleftrightarrow\frac{1}{1-\mathrm{e}^{-sT}} \end{aligned}

拉普拉斯变换的性质

  1. 线性性质

  2. 尺度变换(实数a>0a>0)

    f(at)1aF(sa)([s]>aσ0)f(at)\longleftrightarrow\frac{1}{a}F\left(\frac{s}{a}\right)(\Re[s]>a\sigma_0)

  3. 时移特性(実常数t0>0t_0>0)

    f(tt0)ε(tt0)est0F(s)([s]>σ0)\begin{gathered} f(t-t_0)\varepsilon(t-t_0)\longleftrightarrow\mathrm{e}^{-st_0}F(s)\\(\Re[s]>\sigma_0) \end{gathered}

  4. 复频移特性

    f(t)esatF(ssa)([s]>σ0+σa)f(t)\mathrm{e}^{s_at}\longleftrightarrow F(s-s_a)(\Re[s]>\sigma_0+\sigma_a)

  5. 卷积定理(ss域卷积定理不考):

    对于因果信号f1(t), f2(t)f_1(t),\ f_2(t)f1(t)f2(t)F1(s)F2(s)f_1(t)*f_2(t)\longleftrightarrow F_1(s)F_2(s)

  6. 时域微积分

    f(n)(t)snF(s)m=0n1sn1mf(m)(0)f(n)(t)F(s)sn+r=1n1snr+1f(r)(0)\begin{aligned} f^{(n)}(t)&\longleftrightarrow s^nF(s)-\sum_{m=0}^{n-1}s^{n-1-m}f^{(m)}(0_-)\\ f^{({-n})}(t) &\longleftrightarrow\frac{F(s)}{s^n}+\sum_{r=1}^{n}\frac{1}{s^{n-r+1}}f^{(-r)}(0_-) \end{aligned}

    若为因果信号,则有

    f(n)(t)snF(s)(0t)nf(x)dx1snF(s)\begin{aligned} f^{(n)}(t)&\longleftrightarrow s^nF(s)\\ \left(\int_{0_-}^{t}\right)^nf(x)\mathrm{d}x&\longleftrightarrow\frac{1}{s^n}F(s) \end{aligned}

  7. 复频域(ss域)微积分

    (t)nf(t)dnF(s)dsnf(t)tsF(η)dη\begin{aligned} (-t)^nf(t)&\longleftrightarrow\frac{\mathrm{d}^n F(s)}{\mathrm{d}s^n}\\ \frac{f(t)}{t}&\longleftrightarrow\int_s^{\infty}F(\eta)\mathrm{d}\eta \end{aligned}

  8. 初值定理、终值定理

    初值定理(不含δ(t)\delta(t)及其各阶导数)

    f(0+)=limt0+f(t)=limssF(s)f(0_+)=\lim_{t\to 0_+}f(t)=\lim_{s\to\infty}sF(s)

    终值定理(包含虚轴,即jωj\omega轴)

    f()=lims0sF(s)f(\infty)=\lim_{s\to 0}sF(s)

拉普拉斯逆变换

部分分式展开F(s)=B(s)A(s)\displaystyle F(s)=\frac{B(s)}{A(s)}

(1)求极点(A(s)=0A(s)=0)

(2)将F(s)F(s)展开为部分分式

  1. 单根

    F(s)=i=1nKispi,Ki=(spi)F(s)s=piL1[1spi]=epitε(t)\begin{gathered} F(s)=\sum_{i=1}^{n}\frac{K_i}{s-p_i},\qquad K_i=\left.(s-p_i)F(s)\right|_{s=p_i}\\ \mathcal{L}^{-1}\left[\frac{1}{s-p_i}\right]=\mathrm{e}^{p_it}\varepsilon(t) \end{gathered}

  2. 含共轭复根(p1,2=α±jβp_{1,2}=-\alpha\pm j\beta)

    F0(s)=K1s+αjβ+K2s+α+jβ(K2=K1, K1=K1ejθ=A+jB)f0=2K1eαtcos(βt+θ)ε(t)=2eαt[Acos(βt)Bsinβt]ε(t)\begin{gathered} F_0(s)=\frac{K_1}{s+\alpha-j\beta}+\frac{K_2}{s+\alpha+j\beta}\quad (K_2=K_1^*,\ K_1=|K_1|\mathrm{e}^{j\theta}=A+jB)\\ f_0=2|K_1|\mathrm{e}^{-\alpha t}\cos(\beta t+\theta)\varepsilon(t)=2\mathrm{e}^{-\alpha t}[A\cos(\beta t)-B\sin{\beta t}]\varepsilon({t}) \end{gathered}

  3. 重根(s=p1s=p_1)

    F1(s)=i=1rK1i(sp1)ri+1,K1i=1(i1)!di1dsi1(sp1)iF1(s)s=piL1[1(sp1)n+1]=1n!tnep1tε(t)\begin{gathered}F_1(s)=\sum_{i=1}^{r}\frac{K_{1i}}{(s-p_1)^{r-i+1}},\qquad K_{1i}=\left.\frac{1}{(i-1)!}\frac{\mathrm{d}^{i-1}}{\mathrm{d}s^{i-1}}\left(s-p_1\right)^i F_1(s)\right|_{s=p_i}\\ \mathcal{L}^{-1}\left[\frac{1}{(s-p_1)^{n+1}}\right]=\frac{1}{n!}t^n\mathrm{e}^{p_1t}\varepsilon(t) \end{gathered}

(3)求原函数F(s)f(t)F(s)\longleftrightarrow f(t)

留数法(反演积分)

f(t)=k=1nRes[F(s)est,sk]f(t)=\sum_{k=1}^{n}\mathrm{Res}[F(s)\mathrm{e}^{st},s_k]

求解留数的其中3条规则:

  1. 1级极点

    Res[f(z),z0]=limzz0(zz0)f(z)\mathrm{Res}[f(z),z_0]=\lim_{z\to z_0}(z-z_0)f(z)

  2. mm级极点

    Res[f(z),z0]=1(m1)!limzz0dm1dzm1[(zz0)mf(z)]\mathrm{Res}[f(z),z_0]=\frac{1}{(m-1)!}\lim_{z\to z_0}\frac{\mathrm{d}^{m-1}}{\mathrm{d}z^{m-1}}[(z-z_0)^mf(z)]

  3. f(z)=P(z)Q(z)f(z)=\frac{P(z)}{Q(z)}P(z), Q(z)P(z),\ Q(z)均在z=z0z=z_0处解析,P(z0)0P(z_0)\not= 0Q(z0)=0Q(z_0)=0Q(z0)0Q'(z_0)\not= 0z0z_0为1级极点,z0z_0Q(z)Q(z)的1级零点。

z\boldsymbol{z}变换

zz变换

双边zz变换:F(z)=k=f(k)zkF(z)=\sum_{k=-\infty}^{\infty}f(k)z^{-k}

单边zz变换:F(z)=k=0f(k)zkF(z)=\sum_{k=0}^{\infty}f(k)z^{-k}

f(k)f(k)因果,单边、双边zz变换相等

常用函数的z\boldsymbol{z}变换

δ(k)1(整个z平面)ε(k)zz1(z>1)ε(k1)zz1(z<1)\begin{aligned} \delta(k)&\longleftrightarrow 1\text{(整个$z$平面)}\\ \varepsilon(k)&\longleftrightarrow\frac{z}{z-1}(|z|>1)\\ -\varepsilon(-k-1)&\longleftrightarrow\frac{z}{z-1}(|z|<1) \end{aligned}

z\boldsymbol{z}变换的性质

  1. 线性性质(收敛域至少为相交部分)

  2. 尺度变换(序列乘aka^k)

    akf(k)F(za)(aα<z<aβ)a^kf(k)\longleftrightarrow F\left(\frac{z}{a}\right)(|a|\alpha<|z|<|a|\beta)

  3. 移位(移序)特性

    双边zz变换(m>0m>0)

    f(k±m)z±mF(z)f(k\pm m)\longleftrightarrow z^{\pm m}F(z)

    单边zz变换(m>0m>0)

    f(km)zm[F(z)+k=m1f(k)zk]f(k+m)zm[F(z)k=0m1f(k)zk]\begin{aligned} &f(k-m)\longleftrightarrow z^{-m}\left[F(z)+\sum_{k=-m}^{-1}f(k)z^{-k}\right]\\ &f(k+m)\longleftrightarrow z^{m}\left[F(z)-\sum_{k=0}^{m-1}f(k)z^{-k}\right]\\ \end{aligned}

  4. 卷积定理(收敛域一般为相交部分)

    单边zz要求因果序列f1(t),f2(t)f_1(t),f_2(t)

    f1(t)f2(t)F1(z)F2(z)f_1(t)*f_2(t)\longleftrightarrow F_1(z)F_2(z)

  5. zz域微积分
    微分(序列乘kk)

    kf(k)(z)ddzF(z)kmf(k)[zddz]mF(z)\begin{aligned} kf(k)&\longleftrightarrow(-z)\frac{\mathrm{d}}{\mathrm{d}z}F(z)\\ k^mf(k)&\longleftrightarrow\left[-z\frac{\mathrm{d}}{\mathrm{d}z}\right]^mF(z) \end{aligned}

    积分(序列除(k+m)(k+m))

    mZ,k+m>0f(k)k+mzmzF(η)ηm+1dη\begin{aligned} &\exists m\in \mathbb{Z},k+m>0\\ &\frac{f(k)}{k+m}\longleftrightarrow z^m\int_z^\infty \frac{F(\eta)}{\eta^{m+1}}\mathrm{d}\eta \end{aligned}

  6. kk域反转(仅适用于双边zz变换)

    f(k)F(z1) (1β<z<1α)f(-k)\longleftrightarrow F(z^{-1})\ (\frac{1}{\beta}<|z|<\frac{1}{\alpha})

  7. 部分和

    i=kf(i)zz1F(z)(max(α,1)<z<β)\begin{gathered} \sum_{i=-\infty}^kf(i)\longleftrightarrow\frac{z}{z-1}F(z) (\max(\alpha,1)<|z|<\beta) \end{gathered}

  8. 初值定理、终值定理(右边序列)

    初值定理

    f(M)=limzzMF(z)f(M)=\lim_{z\to \infty}z^MF(z)

    若因果,f(0)=limzF(z)f(0)=\mathop {\lim }\limits_{z\to \infty}F(z)

    终值定理(包含单位圆0<α<10<\alpha<1)

    f()=limkf(k)=limz1z1zF(z)=limz1(z1)F(z)\begin{aligned} f(\infty ) &= \mathop {\lim }\limits_{k \to \infty } f(k)\\ &= \mathop {\lim }\limits_{z \to 1} \frac{z - 1}{z}F(z) = \mathop {\lim }\limits_{z \to 1} (z - 1)F(z) \end{aligned}

z\boldsymbol{z}变换

幂级数展开法

因果序列和反因果序列的象函数分别是z1z^{-1}zz的幂级数。其系数就是相应序列值。

  • 因果序列:圆外展开(负幂项)

  • 反因果序列:圆内展开(正幂项)

  • 双边序列:环域展开

  • 唯一性定理转化为等比级数Cn=f(n)(z0)n!C_n=\displaystyle\frac{f^{(n)}(z_0)}{n!}

原序列通常难以写成闭合形式。

部分分式展开F(z)=B(z)A(z)\displaystyle F(z)=\frac{B(z)}{A(z)}

Case 1 单根

F(z)z=i=0nKizzi,Ki=(zzi)F(z)zz=zi,F(z)=K0+i=1nKizzzi\begin{gathered} \frac{F(z)}{z}=\sum_{i=0}^{n}\frac{K_i}{z-z_i},\\ K_i=\left.(z-z_i)\frac{F(z)}{z}\right|_{z=z_i},\\ F(z)=K_0+\sum_{i=1}^nK_i\frac{z}{z-z_i}\\ \end{gathered}

区分圆内圆外展开:

δ(k)1akε(k)zza(z>a)akε(k1)zza(z<a)\begin{aligned} \delta(k)&\longleftrightarrow 1\\ a^k\varepsilon(k)&\longleftrightarrow\frac{z}{z-a}(|z|>|a|)\\ -a^k\varepsilon(-k-1)&\longleftrightarrow\frac{z}{z-a}(|z|<|a|) \end{aligned}

Case 2 共轭单极点(z1,2=c±jd=αe±jβz_{1,2}=c\pm jd=\alpha \mathrm{e}^{\pm j\beta})

F(z)z=K1zcjd+K1zc+jd(K1=K1ejθ)F(z)z=K1ejθzzαejβ+K1ejθzzαejβ\begin{gathered} \frac{F(z)}{z}=\frac{K_1}{z-c-jd}+\frac{K^*_1}{z-c+jd}\\ (K_1=|K_1|\mathrm{e}^{j\theta})\\ \frac{F(z)}{z}=\frac{|K_1|\mathrm{e}^{j\theta}z}{z-\alpha \mathrm{e}^{j\beta}}+\frac{|K_1|\mathrm{e}^{-j\theta}z}{z-\alpha \mathrm{e}^{-j\beta}}\end{gathered}

f(k)=2K1αkcos(βk+θ)ε(k)(z>α)f(k)=2K1αkcos(βk+θ)ε(k1)(z<α)\begin{aligned} &f(k)=2|K_1|\alpha^k\cos(\beta k+\theta)\varepsilon(k)&(|z|>\alpha)\\ &f(k)=-2|K_1|\alpha^k\cos(\beta k+\theta)\varepsilon(-k-1)&(|z|<\alpha) \end{aligned}

Case 3 重根(z=az=a)

F1(z)=i=1rK1iz(za)ri+1,K1i=1(i1)!di1dzi1(za)rF(z)zz=aZ1[z(za)r]=Akr1(r1)!akr+1ε(k)\begin{gathered} F_1(z)=\sum_{i=1}^{r}\frac{K_{1i}z}{(z-a)^{r-i+1}},\\ K_{1i}=\left.\frac{1}{(i-1)!}\frac{\mathrm{d}^{i-1}}{\mathrm{d}z^{i-1}}\left(z-a\right)^r \frac{F(z)}{z}\right|_{z=a}\\ \mathcal{Z}^{-1}\left[\frac{z}{(z-a)^{r}}\right]=\frac{\mathbf{A}_k^{r-1}}{(r-1)!}a^{k-r+1}\varepsilon(k) \end{gathered}

留数法(反演积分)

f(k)={C内极点Res[F(z)zk1],k0C外极点Res[F(z)zk1],k<0f(k)=\begin{cases} \displaystyle\sum_{\text{C内极点}}\mathrm{Res}\left[F(z)z^{k-1}\right],&k\ge 0\\ \displaystyle -\sum_{\text{C外极点}}\mathrm{Res}\left[F(z)z^{k-1}\right],&k< 0 \end{cases}

求解F(z)zk1F(z)z^{k-1}在极点处留数的2条规则:

  1. 1级极点

    Res[F(z)zk1,zi]=limzzi(zz0)F(z)zk1\mathrm{Res}[F(z)z^{k-1},z_i]=\lim_{z\to z_i}(z-z_0)F(z)z^{k-1}

  2. rr级极点

    Res[F(z)zk1,zi]=1(m1)!limzz0dr1dzr1[(zzi)rF(z)zk1]\begin{aligned} \mathrm{Res}[F(z)z^{k-1},z_i]=\frac{1}{(m-1)!}\lim_{z\to z_0}\frac{\mathrm{d}^{r-1}}{\mathrm{d}z^{r-1}}[(z-z_i)^rF(z)z^{k-1}] \end{aligned}

本文标题:信号与系统3种变换性质整理

文章作者:Levitate_

发布时间:2020年05月30日 - 11:22:41

原始链接:https://levitate-qian.github.io/2020/05/30/Signal-and-System-3-transform/

许可协议: 署名-非商业性使用-禁止演绎 4.0 国际 转载请保留原文链接及作者。